4.7 Article

Strong discontinuities in partially saturated poroplastic solids

期刊

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
卷 199, 期 23-24, 页码 1513-1535

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2010.01.002

关键词

Multiphase porous media; Strain localization; Strong discontinuities; Enhanced finite element methods; Partially saturated media

资金

  1. MIUR
  2. AFOSR, UC Berkeley [FA9550-08-1-0410]

向作者/读者索取更多资源

This paper considers the analysis and numerical simulation of strong discontinuities in partially saturated solids. The goal is to study observed localized failures in such media like shear bands and similar. The developments consider a fully coupled partially saturated elastoplastic model for the (continuum) bulk response of the solid formulated in effective stresses, identifying the necessary mathematical conditions for the appearance of strong discontinuities (that is, discontinuities in the displacement field leading to singular strains) as well as the proper treatment for the fields characterizing the flow of the different fluid phases, namely, the fluid contents of these phases and their individual pore pressures. The geometrically linear range of infinitesimal strains is considered. These developments allow the formulation of multiphase cohesive laws along the strong discontinuity, capturing in this way the coupled localized dissipation observed in the aforementioned failures. Furthermore, the paper also presents the formulation of enhanced finite elements capturing all these discontinuous solutions in general unstructured meshes. In particular, the finite elements capture the strong discontinuity through the proper enhancements of the discrete element strains, allowing for a complete local resolution of these effects. This results in a particularly efficient computational approach, easily accommodated in an existing finite element code. Different representative numerical simulations are presented illustrating the performance of the proposed formulation, as well as its use in practical applications like the modeling of the excavation of tunnels in variably saturated media. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据