4.7 Article

Numerical solutions of strain localization with nonlocal softening plasticity

期刊

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
卷 198, 期 47-48, 页码 3702-3711

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2009.08.002

关键词

Nonlocal; Softening plasticity; Characteristic length; Strain localization; Spectral analysis

资金

  1. National Science Foundation of China (NSFC) [50825803]
  2. Chinese Scholarship Council of Oversea Studies

向作者/读者索取更多资源

Softening plasticity, when it is deprived of a characteristic length, often leads to boundary value problems that are ill-posed and produce unreliable numerical solutions. As meshes are refined, plastic strains localize into bands that become narrower and narrower. and generate load-displacement responses with excessive softening, which may even degenerate into unrealistic snapbacks. In the case of discrete systems, the underlying reasons for this poor numerical performance can be examined using a spectral analysis of the tangential stiffness matrix derived from incremental equilibrium equations. In one-dimensional boundary-valued problems, the introduction of a weak softening element into a mesh of elasto-plastic elements produces a dominant eigenvector that clearly exhibits a strain localization width directly related to the weak element size. The dominant eigenvector that controls the incremental solution varies spuriously when the mesh is refined. which results in mesh dependency. Over-nonlocal softening plasticity introduces a length scale, forces more elements to become plastic, and preserves the width of the plastic zone when the mesh is refined. When one-dimensional meshes are refined, spectral analysis shows that the dominant eigenvector does not vary erratically, and that its deformation patterns are smooth and display a constant localization width. This explains why the spatial distribution of plastic strains and the global load-displacement responses converge to analytical solutions in one dimension. The generalization to higher dimensions will be the object of future studies. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据