4.7 Article

An SPH projection method for simulating fluid-hypoelastic structure interaction

期刊

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
卷 198, 期 33-36, 页码 2785-2795

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2009.04.001

关键词

Smoothed Particle Hydrodynamics; Fluid-structure interaction; Hypoelasticity; Artificial stress

向作者/读者索取更多资源

In this paper an incompressible Smoothed Particle Hydrodynamics (SPH) method is proposed for simulation of fluid-structure interaction problems, deploying the pressure Poisson equation to satisfy incompressibility constraints. Viscous fluid flow past rigid and hypoelastic solid surfaces is studied. The fluid is fully coupled with the solid structure that can undergo large structural deformations. A key feature of the proposed scheme is that the no-slip and coupling conditions on the contact surface are satisfied automatically. To alleviate the numerical difficulties encountered when a hypoelastic solid structure is highly stretched, an artificial stress term is incorporated into the momentum equation which reduces the risk of unrealistic fractures in the material. To demonstrate the ability of the proposed method in dealing with large deformation of free surface, the well known pure dam breaking problem is solved and then, the oscillations of an cantilever beam is simulated to show the capability of the method in capturing the large deformations of an elastic solid. Eventually, three challenging test cases, deformation of an elastic plate subjected to time-dependent water pressure, collapse of a water column with an obstacle and breaking dam on a hypoelastic wall are solved to demonstrate the capability of the proposed scheme. The simulated results are in very good agreement with available experimental and numerical results. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据