4.7 Article

Performance optimization of current focusing and virtual electrode strategies in retinal implants

期刊

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
卷 117, 期 2, 页码 334-342

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2014.06.012

关键词

Current steering; Neuroprosthesis; Retinal implant; Virtual electrode

资金

  1. Australian Research Council (ARC) through its Special Research Initiative (SRI) in Bionic Vision Science and Technology

向作者/读者索取更多资源

The electrode configuration in an implanted visual prosthesis array affects the spatial electric field distribution within the retina, contributing to current focusing and virtual electrode (VE) stimulation strategies. In this paper, a finite element model incorporating various electrode configurations was used to study the interaction between electrode size and electrode-to-cell distance in current focusing and VE stimulation paradigms. The electrode array unit comprises an active electrode, six flanking return electrodes and a distant monopolar return. A quasi-monopolar (QMP) fraction is defined as the proportion of current which can be preferentially returned through the distant return, in comparison with the more adjacent flanking electrodes. The simulation results indicate that current focusing and VE strategies can be optimized by tuning the QMP fraction. The QMP fraction is adjusted to optimize the electric field spread based on retinal ganglion cell (RGC) density in the degenerate retina, thereby offsetting the effect of inhomogeneous distribution of surviving RGCs and leading to a uniform stimulation paradigm across electrodes. Importantly, there is negligible difference in functional performance across electrode configurations for distances less than the electrode diameter, implying that the stimulation mode does not significantly affect activation threshold or activated retinal area for electrode diameters greater than the retinal thickness. Furthermore, the QMP fraction has a significant effect on VE performance, defined by activation threshold and activated retinal area, when threshold current is evenly divided between two adjacent active electrodes. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据