4.7 Article Proceedings Paper

Towards real-time radiation therapy: GPU accelerated superposition/convolution

期刊

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2009.07.004

关键词

Convolution/superposition; Radiation therapy planning; Graphics processing unit (GPU); Inverse planning; Adaptive radiotherapy

向作者/读者索取更多资源

We demonstrate the use of highly parallel graphics processing units (GPUs) to accelerate the superposition/convolution (S/C) algorithm to interactive rates while reducing the number of approximations. S/C first transports the incident fluence to compute the total energy released per unit mass (TERMA) grid. Dose is then calculated by superimposing the dose deposition kernel at each point in the TERMA grid and summing the contributions to the surrounding voxels. The TERMA algorithm was enhanced with physically correct multi-spectral attenuation and a novel inverse formulation for increased performance, accuracy and simplicity. Dose deposition utilized a tilted poly-energetic inverse cumulative-cumulative kernel, with the novel option of using volumetric mip-maps to approximate solid angle ray casting. Exact radiological path ray casting decreased discretization errors. We achieved a speedup of 34x-98x over a highly optimized CPU implementation. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据