4.7 Article

Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations

期刊

COMPUTATIONAL MECHANICS
卷 44, 期 4, 页码 455-471

出版社

SPRINGER
DOI: 10.1007/s00466-009-0383-6

关键词

Voronoi; Finite element; Fracture; Fragmentation; Cohesive crack; Sensitivity to initial conditions; Probabilistic

资金

  1. University of Califorina at Davis

向作者/读者索取更多资源

Under extreme loading conditions most often the extent of material and structural fracture is pervasive in the sense that a multitude of cracks are nucleating, propagating in arbitrary directions, coalescing, and branching. Pervasive fracture is a highly nonlinear process involving complex material constitutive behavior, material softening, localization, surface generation, and ubiquitous contact. A pure Lagrangian computational method based on randomly close packed Voronoi tessellations is proposed as a rational and robust approach for simulating the pervasive fracture of materials and structures. Each Voronoi cell is formulated as a finite element using the Reproducing Kernel Method. Fracture surfaces are allowed to nucleate only at the intercell faces, and cohesive tractions are dynamically inserted. The randomly seeded Voronoi cells provide a regularized random network for representing fracture surfaces. Example problems are used to demonstrate the proposed numerical method. The primary numerical challenge for this class of problems is the demonstration of model objectivity and, in particular, the identification and demonstration of a measure of convergence for engineering quantities of interest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据