4.5 Article

Bio-inspired composite structures subjected to underwater impulsive loading

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 82, 期 -, 页码 134-139

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2013.09.033

关键词

Bio-inspired composite; Biomimetic; Composite failure; Fluid-structure interaction; Underwater impact

资金

  1. Commonwealth Scientific and Industrial Research Organisation (CSIRO)

向作者/读者索取更多资源

Designing lightweight high-performance materials that can sustain high impulsive loadings is of great interest to marine and civil applications. When designing tough, strong new materials from relatively weak components, mimicking structures from nature can be a highly promising strategy, as illustrated by nacre from red abalone shells. One of nacre's most impressive features is its ability to laterally spread damage and dissipate energy over millimetre length scales at crack tips and other defects. In this work, a composite panel is redesigned to mimic nacre's microstructure. The bio-inspired composite panel and the original composite structure, which have identical areal mass, are subjected to an underwater impulsive loading scenario. Their performances are compared numerically in terms of damage and deflection. A finite element fluid-structure interaction model is developed to capture the water impact on E-glass/vinylester composite facets and to provide insights into the deformation modes and failure mechanisms. Damage and degradation in individual unidirectional composite laminas are simulated using Hashin's composite damage model. The delamination between laminas is modelled by a bilinear cohesive model. Results interpreted from this numerical study will be used as guidance for the future manufacturing and experimental characterisation of bio-inspired composite structures. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据