4.5 Article

Crystal plasticity finite-element simulation of work-hardening behavior in a magnesium alloy sheet under biaxial tension

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 51, 期 1, 页码 156-164

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2011.07.026

关键词

Magnesium alloy; Crystal plasticity; Finite-element method; Polycrystalline material; Yield locus; Schmid factor

资金

  1. KAKENHI in Japan [23760697]
  2. Amada Foundation for metal work technology
  3. Grants-in-Aid for Scientific Research [23760697] Funding Source: KAKEN

向作者/读者索取更多资源

This paper presents the prediction of the contours of plastic work for an AZ31 magnesium alloy sheet in the first quadrant of the stress space using a rate-dependent crystal plasticity finite-element method. The contour of plastic work was initially rather flat in the vicinity of equi-biaxial tension, but bulged severely thereafter. Evidently, the shapes of the contours changed as the plastic work increased, exhibiting a differential work-hardening behavior. The variation of the relative activity of each family of slip systems was examined to investigate the mechanism of the differential work-hardening behavior. During uniaxial tension, the work-hardening was determined mainly by the basal slip in the very beginning, whereas it was determined by both the prismatic and the basal slip in the subsequent deformation. On the other hand, during equi-biaxial tension, the relative activity of the prismatic slip systems was much smaller than that under uniaxial tension, whereas the relative activity of the basal slip systems played a dominant role in the work-hardening throughout the deformation. A simple analysis revealed that it was more difficult to activate the prismatic slip systems for equi-biaxial tension than uniaxial tension in rolled magnesium alloy sheets because the two biaxial stresses tended to cancel each other thus decreasing the relative activity as the biaxial stress ratio approached unity. On the other hand, the basal slip systems were much easily activated than the prismatic slip systems although their Schmid factors were small because the shear stress required for the activation of the basal slip systems was much lower than that of the prismatic slip systems. We concluded that such differences in the activities of the slip systems eventually resulted in the differential work-hardening behavior of the contour of plastic work. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据