4.5 Article

A virtual experimental approach to estimate composite mechanical properties: Modeling with an explicit finite element method

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 49, 期 3, 页码 645-651

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2010.06.007

关键词

Virtual experiment; Explicit FEM; Real microstructure; Progressive damage; Fiber composite

向作者/读者索取更多资源

A new virtual experimental approach to estimate the effective transverse properties of fiber-reinforced composite (FRC) is introduced. An explicit finite element method (FEM) is used to perform the composite progressive damage analysis, which successfully overcomes the numerical convergence problem that is encountered during continuous stiffness degradation. The virtual experiment includes four steps: first, generating a real microstructure; second, determining the composite constituent properties; third, progressive damage analysis; and fourth, comparing the results with those from an actual macro experiment. After completing these four steps, an accurate stress-strain curve under a transverse load is obtained. Then, we use this virtual experimental method to analyze the influence of micro parameters, such as interphase strength and residual thermal stress, on FRC macro performance. This virtual experiment method can be used for any composites and can provide more detailed material information than actual experiments as well as a direct reference for composite optimum design. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据