4.5 Article

Moisture-related mechanical properties of softwood: 3D micromechanical modeling

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 46, 期 2, 页码 310-320

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2009.03.008

关键词

Moisture; Hygroelasticity; Shrinkage; Microstructure; Finite element method

向作者/读者索取更多资源

Computational micromechanical analysis of the influence of moisture, density and microstructure of late-wood on its hydroelastic and shrinkage properties is carried out. The elastic properties of cell sublayers have been determined using the unit cell models as for fiber reinforced composites (two covered cylinders representative volume element, for S1, S2 and S3 sublayers) and rectangular embedded unit cells (for isotropic M and P sublayers). 3D hierarchical finite element models of softwood cells as a hexagon-shape-tube with multilayered walls were generated using parametric techniques. The results for elastic properties of cell sublayers; obtained from the unit cell models, from the self-consistent method and Halpin-Tsai equations are compared, and good agreement between these methods was observed. A computational technique, based on the representation of moisture effect as equivalent temperature-caused effects, has been developed and employed to the modeling of the moisture-related changes of the elastic properties of cell layers. A series of computational experiments have been carried out In the simulations, it was observed that the shrinkage coefficients of longitudinal direction increase with increasing MFAs in layer S2, while the reverse is true in the transverse plane. The shrinkage coefficients of wood depend strongly on the shape of the hexagon-shaped cells. Wood density has a strong effect on both the Young's modulus and the transverse Young's modulus. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据