4.2 Article

Radial Basis Function-Sparse Partial Least Squares for Application to Brain Imaging Data

出版社

HINDAWI LTD
DOI: 10.1155/2013/591032

关键词

-

资金

  1. center of medical checkup in Kyushu University
  2. NCNP [24-10]
  3. Ministry of Education, Culture, Sport, Science and Technology of Japan [24700286]
  4. Grants-in-Aid for Scientific Research [24700286] Funding Source: KAKEN

向作者/读者索取更多资源

Magnetic resonance imaging (MRI) data is an invaluable tool in brain morphology research. Here, we propose a novel statistical method for investigating the relationship between clinical characteristics and brain morphology based on three-dimensional MRI data via radial basis function-sparse partial least squares (RBF-sPLS). Our data consisted of MRI image intensities for multimillion voxels in a 3D array along with 73 clinical variables. This dataset represents a suitable application of RBF-sPLS because of a potential correlation among voxels as well as among clinical characteristics. Additionally, this method can simultaneously select both effective brain regions and clinical characteristics based on sparse modeling. This is in contrast to existing methods, which consider prespecified brain regions because of the computational difficulties involved in processing high-dimensional data. RBF-sPLS employs dimensionality reduction in order to overcome this obstacle. We have applied RBF-sPLS to a real dataset composed of 102 chronic kidney disease patients, while a comparison study used a simulated dataset. RBF-sPLS identified two brain regions of interest from our patient data: the temporal lobe and the occipital lobe, which are associated with aging and anemia, respectively. Our simulation study suggested that such brain regions are extracted with excellent accuracy using our method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据