4.2 Article

Weighted Phase Lag Index and Graph Analysis: Preliminary Investigation of Functional Connectivity during Resting State in Children

出版社

HINDAWI LTD
DOI: 10.1155/2012/186353

关键词

-

资金

  1. Grant Fortune [1982-0-0]
  2. Center for Integrated Neuroscience (CIN) of Tubingen (Germany) [2010-17]

向作者/读者索取更多资源

Resting state functional connectivity of MEG data was studied in 29 children (9-10 years old). The weighted phase lag index (WPLI) was employed for estimating connectivity and compared to coherence. To further evaluate the network structure, a graph analysis based on WPLI was used to determine clustering coefficient (C) and betweenness centrality (BC) as local coefficients as well as the characteristic path length (L) as a parameter for global interconnectedness. The network's modular structure was also calculated to estimate functional segregation. A seed region was identified in the central occipital area based on the power distribution at the sensor level in the alpha band. WPLI reveals a specific connectivity map different from power and coherence. BC and modularity show a strong level of connectedness in the occipital area between lateral and central sensors. C shows different isolated areas of occipital sensors. Globally, a network with the shortest L is detected in the alpha band, consistently with the local results. Our results are in agreement with findings in adults, indicating a similar functional network in children at this age in the alpha band. The integrated use of WPLI and graph analysis can help to gain a better description of resting state networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据