4.7 Review

Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties-A Review

期刊

出版社

WILEY
DOI: 10.1111/j.1541-4337.2012.00193.x

关键词

-

向作者/读者索取更多资源

Rice starch is one of the major cereal starches with novel functional properties. Significant progress has been made in recent years on the characterization of rice starches separated from different rice cultivars. Studies have revealed that the molecular structure and functional properties are affected by rice germplasm, isolation procedure, climate, agronomic conditions, and grain development. Morphological studies (microscopy and particle size analysis) have reflected significant differences among rice starch granule shapes (polyhedral, irregular) and in granule size (2 to 7 mu m). Nonwaxy and long-grain rice starches show greater variation in granular size than the waxy starches. Rice starch granules are smaller than other cereal starches with amylose contents varying from virtually amylose-free in waxy to about 35% in nonwaxy and long-grain rice starches. Amylose content appears to be the major factor controlling almost all physicochemical properties of rice starch due to its influence on pasting, gelatinization, retrogradation, syneresis, and other functional properties. Waxy rice starches have high swelling and solubility parameters, and larger relative crystallinity values than nonwaxy and long-grain starches. However, nonwaxy rice starches have a higher gelatinization temperature than the waxy and long-grain starches. The bland taste, nonallergenicity, and smooth, creamy, and spreadable characteristics of rice starch make it unique and valuable in food and pharmaceutical applications. This review provides recent information on the variation in the molecular structure and functional properties of different rice starches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据