4.7 Article

Transparent PMMA-based nanocomposite using electrospun graphene-incorporated PA-6 nanofibers as the reinforcement

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 89, 期 -, 页码 134-141

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2013.09.022

关键词

Nanocomposites; Functional composites; Mechanical properties; Electro-spinning; Graphene

资金

  1. Doctoral Student Innovation Fund of Donghua University [CUSF-DH-D-2013043]
  2. National Natural Science Foundation of China [51073032]
  3. Scientific Research Foundation for Returned Scholars [ZX201106000004]

向作者/读者索取更多资源

This paper deals with development of a novel poly(methyl methacrylate) (PMMA) based transparent nanocomposite made from using electrospun graphene-incorporated-Nylon 6 (Gr/PA-6) nanofibers as the reinforcement, in which both the mechanical and optical properties of the developed Gr/PA-6/PMMA nanocomposite are paid particular attention. By introducing the concept of electrospun PA-6 nanofibers as the dispersing carrier for graphene nanosheets and by employing a facile self-blending co-electrospinning approach for homogeneously hybridizing nanocomposite nanofibers of Gr/PA-6 with PMMA fibers, aggregation issue of the involved nanofillers (i.e., the Gr nanosheets and the Gr-incorporated PA-6 nanofibers) within the PMMA matrix could be effectively addressed. Visible light transmittance and tensile mechanical properties of the hot-pressed Gr/PA-6/PMMA nanocomposite were examined in relation to the loading fractions of the Gr nanosheets in the nanocomposite. It was demonstrated that a significant enhancement in tensile mechanical properties of the Gr/PA-6/PMMA nanocomposite was accomplished at a Gr loading of merely 0.01 wt%; that is, a nearly 56%, 113% respective improvement of tensile strength, Young's modulus, and noticeably above 250% increase of fracture toughness were achieved, while the transmittance of the nanocomposite was maintained above 70% (in other words, less than 10% loss in transparency in comparison with neat PMMA) in the visible wavelength range of 400-800 nm. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据