4.7 Article

Molecular modeling of crosslinked graphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties

期刊

COMPOSITES PART B-ENGINEERING
卷 54, 期 -, 页码 353-364

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2013.05.034

关键词

Nano-structures; Mechanical properties; Elasticity; Computational modeling

资金

  1. NSF EPSCoR Research Grant [23669]

向作者/读者索取更多资源

The mechanical properties of crosslinked graphene/epoxy nanocomposites have been investigated using molecular mechanics (MM) and molecular dynamics simulations (MD). The influence of graphene nanoplatelet concentrations, aspect ratios and dispersion on elastic constants and stress-strain responses are studied. The cohesive and pullout forces at the interface of G-Ep nanocomposites are also investigated. The simulated MD models were further analyzed through radial distribution function, molecular energy and atom density. The results show significant improvement in Young's modulus and shear modulus for the G-Ep system in comparison to neat epoxy resin. The graphene concentrations in the range of 1-3% and graphene with low aspect ratio are seen to improve Young's modulus. The dispersed graphene system is seen to enhance in-plane elastic modulus than the agglomerated graphene system. The cohesive and pullout forces versus displacements data were plotted under normal and shear modes in order to characterize interfacial properties. The cohesive force is significantly improved by attaching chemical bonding at the graphene-epoxy interface. It appears that elastic constants determined by molecular modeling and nanoindentation test methods are comparatively higher than the micromechanics based predicted value and coupon test data. This is possibly due to scaling effect. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据