4.7 Article

Investigation of sub-critical fatigue crack growth in FRP/concrete cohesive interface using digital image analysis

期刊

COMPOSITES PART B-ENGINEERING
卷 51, 期 -, 页码 35-43

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2013.02.015

关键词

Polymer-matrix composites (PMCs); Debonding; Fatigue; Stress transfer

向作者/读者索取更多资源

The cohesive stress transfer during the sub-critical crack growth associated with the debonding of FRP from concrete under fatigue loading is experimentally investigated using the direct shear test set-up. The study focused on high-amplitude/low-cycle fatigue. The fatigue sub-critical crack growth occurs at a load that is smaller than the static bond capacity of the interface, obtained from monotonic quasi-static loading, and is also associated with a smaller value of the interfacial fracture energy. The strain distribution during debonding is obtained using digital image correlation. The results indicate that the strain distribution along the FRP during fatigue is similar to the strain distribution during debonding under monotonic quasi-static loading. The cohesive crack model and the shape of the strain distribution adopted for quasi-static monotonic loading is indirectly proven to be adequate to describe the stress transfer during fatigue loading. The length of the stress transfer zone during fatigue is observed to be smaller than the cohesive zone of the interfacial crack under quasi-static monotonic loading. The strain distribution across the width of the FRP sheet is not altered during and by fatigue loading. A new formulation to predict the debonding crack growth during fatigue is proposed. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据