4.7 Article

The Mode I interlaminar fracture toughness of chemically carbon nanotube grafted glass fabric/epoxy multi-scale composite structures

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2014.04.013

关键词

Laminates; Fracture toughness; Electron microscopy; Injection moulding

资金

  1. Selcuk University Scientific Research Projects [09101054]

向作者/读者索取更多资源

A novel and simple chemical route was successfully applied to graft carbon nanotubes (CNTs) onto silanized plain weave glass fabric (PWGF) mats, as confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy. The CNTs grafted PWGF mats were used to reinforce epoxy matrix for multi-scale composite production due to their potential for increasing interlaminar fracture toughness by bridging the ply interfaces. Grafting CNTs onto PWGFs improved both initial and steady-state toughness more than double as measured by Mode I interlaminar fracture testing. Failed specimens were visualized to determine the failure modes using fractography. The key findings indicated that the covalent interactions created between CNTs and fibers lead fibers bridging the interface region like barbed wires, which are mainly responsible for increased fracture toughness as a result of improved interfacial adhesion. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据