4.7 Article

Numerical analysis of size effects on open-hole tensile composite laminates

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2012.12.001

关键词

Laminates; Fracture toughness; Strength; Computational modelling

资金

  1. National University of Singapore

向作者/读者索取更多资源

The tensile strength of open-hole fibre reinforced composite laminates depends on in-plane, thickness and ply lay-up scaling. Translaminar (fibre direction) mode I fracture toughness has recently been experimentally determined to be thickness dependent. This paper presents a computational study of the tensile strength prediction of open-hole laminates using a cohesive zone model. To the authors' knowledge, it is for the first time in the literature that the thickness-dependence of translaminar fracture toughness is accounted for in the numerical modelling of composites. The thickness size effect in the strength of open-hole composite laminates failed by pull-out is accurately predicted for the first time by a deterministic model. It is found that neglecting delamination in the numerical models will lead to mesh-dependency and over-estimation on the predicted strength. Smeared crack model with cohesive elements to model delamination is able to predict the correct failure mode; but it is found not suitable for accurate strength predictions for laminates failed by delamination. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据