4.7 Article

Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment

期刊

COMPOSITE STRUCTURES
卷 106, 期 -, 页码 128-138

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2013.06.003

关键词

Free vibration; Carbon nanotube; Composite; First order shear deformation theory; Mesh-free method

向作者/读者索取更多资源

In this paper, a free vibration analysis of functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs), using the element-free kp-Ritz method, is presented. Different types of distributions of uniaxially aligned SWCNTs are considered. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are assumed to be graded through the thickness direction according to several linear distributions of the volume fraction of carbon nanotubes. The governing equations are based on the first-order shear deformation plate theory and the two-dimensional displacement fields are approximated by mesh-free kernel particle functions. Convergence and comparison studies have been carried out to verify the stability and accuracy of the present method for analysis of free vibration of various types of CNTRC plates. In computational simulation, several examples are presented to analyze the effects of carbon nanotue volume fraction, plate width-to-thickness ratio, plate aspect ratio and temperature change on natural frequencies and mode shapes of various types of FG-CNTRC plates, and results for uniformly distributed (UD) CNTRC plates are also provided for comparison. The effect of boundary conditions is also examined. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据