4.7 Article

A three-dimensional micromechanical model to predict the viscoelastic behavior of woven composites

期刊

COMPOSITE STRUCTURES
卷 93, 期 11, 页码 2733-2739

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2011.05.031

关键词

Woven composites; Viscoelasticity; Mechanical properties; Laminate theory

向作者/读者索取更多资源

Polymer matrix based cloth composites are increasingly used in engineering applications. For such composites, significant viscoelastic behavior can be observed for dynamic load conditions. The viscoelastic effect is primarily due to the polymeric matrix used as most of the fibers used in structural applications are elastic. Matrix does not show a major contribution in the axial properties of composites, thus in the traditional modeling its viscoelastic nature is often ignored. However, the effective out of plane properties are influenced by the matrix material and exhibit significant damping characteristics. Therefore, a complete three-dimensional (3-D) model considering the viscoelastic nature of matrix is needed for better understanding of cloth composites. An analytical 3-D micromechanical model based on classical laminate theory (CLT) is verified, in this paper for the prediction of effective elastic and viscoelastic properties of a cloth composite. The method is shown to be accurate. This model is extended to the viscoelastic regime with the use of Laplace transform and correspondence principle. Prony series coefficients for composite cloth are obtained for different volume fractions of fibers in yarn. It is observed from the hysteresis plots that dissipation in out of plane normal and shear modes is significantly higher than the normal directions. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据