4.4 Article

Responses of gill mitochondria-rich cells in Mozambique tilapia exposed to acidic environments (pH 4.0) in combination with different salinities

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpa.2010.12.003

关键词

Acid-base regulation; Osmoregulation; Mitochondria-rich cell; Plasma osmolality; Mozambique tilapia; Oreochromis mossambicus

资金

  1. Grants-in-Aid for Scientific Research [10J04313] Funding Source: KAKEN

向作者/读者索取更多资源

On exposure to hyposmotic acidic water, teleost fish suffer from decreases in blood osmolality and pH, and consequently activate osmoregulatory and acid-base regulatory mechanisms to restore disturbed ion and acid-base balances. In Mozambique tilapia Oreochromis mossambicus exposed to acidic (pH 4.0) or neutral (pH 7.4-7.7) freshwater in combination with 0mM or 50mM NaCl, we examined functional and morphological changes in gill mitochondria-rich (MR) cells. We assessed gene expression of Na(+)/H(+) exchanger-3 (NHE3), Na(+)/Cl(-) cotransporter (NCC), vacuolar-type H(+)-ATPase (V-ATPase) and Na(+)/HCO(3-) cotransporter-1 (NBC1) in the gills. The mRNA expression of NHE3 and NCC in tilapia gills were higher in acidic freshwater than in that supplemented with 50mM NaCl, while there was no significant difference in mRNA levels of V-ATPase and NBC1. In addition, immunocytochemical observations showed that apical-NHE3 MR cells were enlarged, and frequently formed multicellular complexes with developed deep apical openings in acidic freshwater with 0mM and 50mM NaCl. These findings suggest that gill MR cells respond to external salinity and pH treatments, by parallel manipulation of osmoregulatory and acid-base regulatory mechanisms. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据