4.2 Article

Quantifying functional diversity with graph-theoretical measures: advantages and pitfalls

期刊

COMMUNITY ECOLOGY
卷 9, 期 1, 页码 11-16

出版社

AKADEMIAI KIADO ZRT
DOI: 10.1556/ComEc.9.2008.1.2

关键词

clustering; minimum spanning tree; pair-wise species distances

类别

向作者/读者索取更多资源

Recently, a number of measures of functional diversity have been proposed for data on species presences and absences. One of the most fashionable methods uses cluster analysis of species computed from a matrix of functional characters. Functional diversity is then summarized as the sum of branch lengths of the dendrogram (FDD). Like other graph-theoretical measures of functional diversity, FDD is an increasing function of species richness. This makes FDD inadequate for comparative studies if we want to quantify a component of functional diversity that is not directly related to differences in species counts. The aim of this paper is thus to develop a graph-theoretical measure of functional diversity that does not depend of species richness. The edges of the minimum spanning tree, calculated from the pair-wise inter-species dissimilarity matrix based on functional traits, are ranked and then a power law relationship is established with the cumulative distances. We empirically demonstrate that the exponent of this relationship is independent of species richness and is therefore a suitable measure of functional diversity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据