4.7 Article

Nonlinear force density method for the form-finding of minimal surface membrane structures

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cnsns.2013.10.023

关键词

Form-finding; Nonlinear force density method; Minimal surface membranes

向作者/读者索取更多资源

We develop an alternative approach for the form-finding of the minimal surface membranes (including cable membranes) using discrete models and nonlinear force density method. Two directed weighted graphs with 3 and 4-sided regional cycles, corresponding to triangular and quadrilateral finite element meshes are introduced as computational models for the form-finding problem. The triangular graph model is closely related to the triangular computational models available in the literature whilst the quadrilateral graph uses a novel averaging approach for the form-finding of membrane structures within the context of nonlinear force density method. The viability of the mentioned discrete models for form-finding are studied through two solution methods including a fixed-point iteration method and the Newton-Raphson method with backtracking. We suggest a hybrid version of these methods as an effective solution strategy. Examples of the formation of certain well-known minimal surfaces are presented whilst the results obtained are compared and contrasted with analytical solutions in order to verify the accuracy and viability of the suggested methods. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据