4.7 Article

Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation

出版社

ELSEVIER
DOI: 10.1016/j.cnsns.2007.03.003

关键词

gray-coded genetic algorithm; chaos mapping; rapid convergence; pollution source identification; convection-diffusion equation

向作者/读者索取更多资源

In order to reduce the computational amount and improve computational precision for nonlinear optimizations and pollution source identification in convection-diffusion equation, a new algorithm, chaos gray-coded genetic algorithm (CGGA) is proposed, in which initial population are generated by chaos mapping, and new chaos mutation and Hooke-Jeeves evolution operation are used. With the shrinking of searching range, CGGA gradually directs to an optimal result with the excellent individuals obtained by gray-coded genetic algorithm. Its convergence is analyzed. It is very efficient in maintaining the population diversity during the evolution process of gray-coded genetic algorithm. This new algorithm overcomes any Hamming-cliff phenomena existing in other encoding genetic algorithm. Its efficiency is verified by application of 20 nonlinear test functions of 1-20 variables compared with standard binary-coded genetic algorithm and improved genetic algorithm. The position and intensity of pollution source are well found by CGGA. Compared with Gray-coded hybrid-accelerated genetic algorithm and pure random search algorithm, CGGA has rapider convergent speed and higher calculation precision. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据