4.7 Article

Do nanoenergetic particles remain nano-sized during combustion?

期刊

COMBUSTION AND FLAME
卷 161, 期 5, 页码 1408-1416

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2013.10.017

关键词

Nanoparticles; Metals burning; Molecular dynamics; Sintering

资金

  1. Army Research Office
  2. National Science Foundation through TeraGrid [TG-DMS110011]

向作者/读者索取更多资源

It is axiomatic that the burning time dependence on particle size follows an integer power law dependence. However, a considerable body of experimental data show a power dependence less than unity. In this paper, we focus on what might be responsible for the fractional power dependence observed for the burning time for nanoparticles (e.g. Al and B). Specifically we employ reactive molecular dynamics simulations of oxide-coated aluminum nanoparticles (Al-NPs). Since most nanomaterials experimentally investigated are aggregates, we study the behavior of the simplest aggregate - a doublet of two spheres. The thermo-mechanical response of an oxide coated Al-NP is found to be very different than its solid alumina counterpart, and in particular we find that the penetration of the core aluminum cations into the shell significantly softens it, resulting in sintering well below the melting point of pure alumina. For such coated nanoparticles, we find a strong induced electric field exists at the core-shell interface. With heating, as the core melts, this electric field drives the core Al cations into the shell. The shell, now a sub-oxide of aluminum, melts at a temperature that is lower than the melting point of aluminum oxide. Following melting, the forces of surface tension drive two adjacent particles to fuse. The characteristic sintering time (heating time + fusion time) is seen to be comparable to the characteristic reaction time, and thus it is quite possible for nano particle aggregates to sinter into structures with larger length scales, before the bulk of the combustion can take place. This calls into question what the appropriate 'effective size' of nanoparticle aggregates is. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据