4.7 Article

Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging

期刊

COMBUSTION AND FLAME
卷 160, 期 6, 页码 1033-1043

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2013.01.018

关键词

Autoignition; Flashback; Propane; Flow reactor

资金

  1. Swedish Research Council (Vetenskapsradet) [A0088001]

向作者/读者索取更多资源

Autoignition of propane in air was visualised in a turbulent flow reactor using natural OH*-chemiluminescence imaging. The spatial and temporal development of autoignition kernels was studied in an optically accessible tubular section of the reactor. Kernel nucleation, movement and growth affected the location and movement of subsequent autoignition sites, and resulted in stagnation of the incoming flow and flashback. The autoignition delays of the reactants were measured under various conditions of temperature, pressure and equivalence ratio, relevant to micro gas turbines: Temperature T= 803-903 K, pressure p = 0.4-0.6 MPa, equivalence ratio phi = 0.2-0.6, mass flow rate of reactants m(r) = 8-21 g/s, with ignition delays tau between 191 and 498 ms. The effect of diluting the propane + air mixtures with CO2 was investigated for mole fractions of 0 < 0.1. An empirical correlation for the autoignition delays was developed for the aforementioned conditions, and values of activation energy were calculated on the basis of the experimental data. The ignition delay times were compared with the predictions of chemical kinetic models and experimental data previously reported in the literature. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据