4.7 Article

A consistent chemical mechanism for oxidation of substituted aromatic species

期刊

COMBUSTION AND FLAME
卷 157, 期 10, 页码 1879-1898

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2010.07.009

关键词

Chemical mechanism; Kinetics; Substituted aromatics; Fuel surrogate

资金

  1. Air Force Office of Scientific Research
  2. NASA

向作者/读者索取更多资源

Computational studies of combustion in engines are typically performed by modeling the real fuel as a surrogate mixture of various hydrocarbons. Aromatic species are crucial components in these surrogate mixtures. In this work, a consistent chemical mechanism to predict the high temperature combustion characteristics of toluene, styrene, ethylbenzene, 1,3-dimethylbenzene (m-xylene), and 1-methylnaphthalene is presented. The present work builds on a detailed chemical mechanism for high temperature oxidation of smaller hydrocarbons developed by Blanquart et al. [Combust. Flame 156 (2009) 588-607]. The base mechanism has been validated extensively in the previous work and is now extended to include reactions of various substituted aromatic compounds. The reactions representing oxidation of the aromatic species are taken from the literature or are derived from those of the lower aromatics or the corresponding alkane species. The chemical mechanism is validated against plug flow reactor data, ignition delay times, species profiles measured in shock tube experiments, and laminar burning velocities. The combustion characteristics predicted by the chemical model compare well with those available from experiments for the different aromatic species under consideration. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据