4.7 Article

Flame-vortex interaction driven combustion dynamics in a backward-facing step combustor

期刊

COMBUSTION AND FLAME
卷 156, 期 5, 页码 1111-1125

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2009.02.003

关键词

Thermoacoustic instability; Combustion dynamics; Flame-vortex interactions

资金

  1. ONR [N00014-05-1-0434, N00014-05-1-0252]
  2. US Department of Energy, University Turbine Systems Research Program [DE-FC26-02NT41431]

向作者/读者索取更多资源

The combustion dynamics of propane-hydrogen Mixtures are investigated in an atmospheric pressure, lean, premixed backward-facing step combustor. We systematically vary the equivalence ratio, inlet temperature and fuel composition to determine the stability map of the combustor. Simultaneous pressure. velocity, heat release rate and equivalence ratio measurements and high-speed video from the experiments are used to identify and characterize several distinct operating modes. When fuel is injected far upstream from the step, the equivalence ratio entering the flame is temporally and spatially uniform, and the combustion dynamics are governed only by flame-vortex interactions. Four distinct dynamic regimes are observed depending on the operating parameters. At high but lean equivalence ratios, the flame is unstable and oscillates strongly as it is wrapped around the large unsteady wake vortex. At intermediate equivalence ratios, weakly oscillating quasi-stable flames are observed. Near the lean blowout limit, long stable flames extending from the corner of the step are formed. At atmospheric inlet temperature, the unstable mode resonates at the 1/4 wavemode of the combustor. As the inlet temperature is increased, the 5/4 wavemode of the combustor is excited at high but lean equivalence ratios, forming the high-frequency unstable flames. Higher hydrogen concentration in the fuel and higher inlet temperatures reduce the equivalence ratios at which the transitions between regimes are observed. We plot combustion dynamics maps or the response curves, that is the overall sound pressure level as a function of the equivalence ratio, for different operating conditions. We demonstrate that numerical results of strained premixed names can be used to collapse the response curves describing the transitions among the dynamic modes onto a function of the heat release rate parameter alone, rather than a function dependent on the equivalence ratio, inlet temperature and fuel composition separately. We formulate a theory for predicting the critical values of the heat release parameter at which quasi-stable to unstable and unstable to high-frequency unstable modes take place. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据