4.4 Article

Emerging Analytical Separation Techniques with High Throughput Potential for Pharmaceutical Analysis, Part I: Stationary Phase and Instrumental Developments in LC

期刊

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/138620710791515897

关键词

High throughput; pharmaceutical analysis; HPLC; UPLC; fused-core particles; monolithic columns; HTLC; kinetic plots

资金

  1. Research Foundation - Flanders (FWO)

向作者/读者索取更多资源

In recent years, a trend of change has been observed within pharmaceutical industry. As modern drug discovery has reached a remarkable level of complexity and drugs need to be discovered, developed and produced against strict timelines and within cost- and regulatory constraints, industry seeks lean solutions to increase productivity. Among them, increasing the sample throughput of the ever-growing number of necessary (routine) analyses has become a popular target to cut precious time. For the last thirty years, High-Performance Liquid Chromatography (HPLC) has been the leading technology when it comes to various analyses in pharmaceutical industry; however, its necessity of serial analyses taking typically 10-45 min has been a sample throughput-limiting barrier. Lately, the fundamentals of HPLC have been exploited to raise new technologies that can speed up analyses to ground breaking limits, without compromising separation efficiency. This paper reviews some promising technologies, i.e. totally porous sub-2 mu m particles accompanied by pressures up to 1000 bar (Ultra-Performance Liquid Chromatography or UPLC), fused-core particle technology, monolithic supports and High Temperature Liquid Chromatography (HTLC), having the potential to take LC to the next level in pharmaceutical industry. As each analytical method has its own demands, the advances of the above technologies are discussed for different applications in pharmaceutical analysis where high throughput analysis can be meaningful, i.e. in a drug discovery and development setting, and in quality operations. Both chemical and biological pharmaceuticals are considered. We discuss the perspectives of these technologies and their realizations up to now in high throughput pharmaceutical analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据