4.7 Article

Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 102, 期 -, 页码 21-28

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2012.07.033

关键词

ZnO nanoparticles; Hydrothermal synthesis; Antibacterial activity; Escherichia coli; Staphylococcus aureus

资金

  1. Ministry of Education and Science of the Republic of Serbia [III45004]

向作者/读者索取更多资源

Metal oxide nanoparticles represent a new class of important materials that are increasingly being developed for use in research and health-related applications. Although the antibacterial activity and efficiency of bulk zinc oxide were investigated in vitro, the knowledge about the antibacterial activity of ZnO nanoparticles remains deficient. In this study, we have synthesized ZnO particles of different sizes and morphologies with the assistance of different types of surface stabilizing agents - polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and poly (alpha,gamma, L-glutamic acid) (PGA) - through a low-temperature hydrothermal procedure. The characterization of the prepared powders was preformed using X-ray diffraction (XRD) method and field emission scanning electron microscopy (FE SEM), as well as Malvern's Mastersizer instrument for particle size distribution. The specific surface area (SSA) of the ZnO powders was measured by standard Brunauer-Emmett-Teller (BET) technique. The antibacterial behavior of the synthesized ZnO particles was tested against gram-negative and gram-positive bacterial cultures, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. We compared the results of the antibacterial properties of the synthesized ZnO samples with those of the commercial ZnO powder. According to the obtained results, the highest microbial cell reduction rate was recorded for the synthesized ZnO powder consisting of nanospherical particles. In all of the examined samples. ZnO particles demonstrated a significant bacteriostatic activity. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据