4.7 Article

Synthesis of polyethylene glycol- and sulfobetaine-conjugated zwitterionic poly(L-lactide) and assay of its antifouling properties

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 102, 期 -, 页码 331-340

出版社

ELSEVIER
DOI: 10.1016/j.colsurfb.2012.08.025

关键词

Polyethylene glycol; Zwitterionic polyester; Poly(L-lactide); Click chemistry; Antifouling property

资金

  1. National Natural Science Foundation of China [20975082, 21175107, 31100726]
  2. Ministry of Education of the People's Republic of China [NCET-08-0464]
  3. State Forestry Administration of the People's Republic of China [200904004]
  4. Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry
  5. Northwest AF University

向作者/读者索取更多资源

A new antifouling polyester monomethoxy-poly(ethylene glycol)-b-poly(L-lactide)-b-poly(sulfobetaine methacrylate) (MPEG-PLA-PSBMA) was obtained by ring-opening polymerization of L-lactide, and subsequent click chemistry to graft the azide end-functionalized poly(sulfobetaine methacrylate) (polySBMA) moieties onto the alkyne end-functionalized MPEG-PLA (MPEG-PLA-alkyne). The chemical structure of the polymer was characterized using H-1 nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and its physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. To investigate its hydrophilicity and stability, as well as its antifouling properties, the polymer was also prepared as a surface coating on glass substrates. The wettability and stability of this polyester was examined by contact angle measurements. Furthermore, its antifouling properties were investigated via protein adsorption, cell adhesion studies, and bacterial attachment assays. The results suggest that the prepared zwitterionic polyester exhibits durable wettability and stability, as well as significant antifouling properties. The new zwitterionic polyester MPEG-PLA-PSBMA could be developed as a promising antifouling material with extensive biomedical applications. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据