4.7 Article

Biomimetic membrane platform: Fabrication, characterization and applications

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 103, 期 -, 页码 510-516

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2012.10.066

关键词

Tethered lipid membrane; Self-assembly; mu-Contact printing; alpha-Laminin peptide cushion; Cytochrome bo(3) ubiquinol oxidase

资金

  1. A*STAR JCOGrant of Singapore [10/03/FG/06/06]

向作者/读者索取更多资源

A facile method for assembly of biomimetic membranes serving as a platform for expression and insertion of membrane proteins is described. The membrane architecture was constructed in three steps: (i) assembly/printing of alpha-laminin peptide (P19) spacer on gold to separate solid support from the membrane architecture; (ii) covalent coupling of different lipid anchors to the P19 layer to serve as stabilizers of the inner leaflet during bilayer formation; (iii) lipid vesicle spreading to form a complete bilayer. Two different lipid membrane systems were examined and two different P19 architectures prepared by either self-assembly or mu-contact printing were tested and characterized using contact angle (CA) goniometry, surface plasmon resonance (SPR) spectroscopy and imaging surface plasmon resonance (iSPR). It is shown that surface coverage of cushion layer is significantly improved by mu-contact printing thereby facilitating bilayer formation as compared to self-assembly. To validate applicability of proposed methodology, incorporation of Cytochrome bo(3) ubiquinol oxidase (Cyt-bo(3)) into biomimetic membrane was performed by in vitro expression technique which was further monitored by surface plasmon enhanced fluorescence spectroscopy (SPFS). The results showed that solid supported planar membranes, tethered by alpha-laminin peptide cushion layer, provide an attractive environment for membrane protein insertion and characterization. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据