4.7 Article

In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 107, 期 -, 页码 167-173

出版社

ELSEVIER
DOI: 10.1016/j.colsurfb.2013.01.068

关键词

Electrospinning; PCEC; Fibrous scaffold; Biomimetic mineralization; Simulated body fluid; Osteoblastic cell

资金

  1. National Natural Science Foundation [NSFC81201682, NSFC81201784]
  2. Young Faculty Grant of Luzhou Medical College Research Foundation

向作者/读者索取更多资源

In this study, a fibrous scaffold was prepared by electrospinning triblock PCL-PEG-PCL (PCEC) copolymer. Afterwards, in vitro biomimetic mineralization was carried out through incubation of the PCEC fibrous mats in a simulated body fluid (SBF) for different time. The apatite-deposited PCEC composite scaffolds were characterized by using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) observation and weighing. Due to the importance of biocompatibility, rat ROS 17/2.8 osteoblasts were cultured on mineralized PCEC scaffolds, and the cell proliferation was investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MU) assays. The obtained results confirmed that the deposited apatite had the chemical composition and crystalline phase similar to those of hydroxyapatite (HA). After 21 days incubation, the mass increase of PCEC scaffold reached up to 22%. Moreover, in vitro cell culture also confirmed that osteoblasts could attach on the mineralized composite scaffolds, and the HA-deposited PCEC mats had less cytotoxicity. So, the mineralized PCEC composite scaffolds had a great potential for tissue engineering application. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据