4.7 Article

Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica-The effect of varied particle size and morphology

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 100, 期 -, 页码 22-30

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2012.04.042

关键词

Mesoporous silica; Immobilization; Enzymes; Lipase; Biocatalysis; Particle morphology

资金

  1. Nanolith Sverige AB
  2. Swedish Research Council

向作者/读者索取更多资源

Immobilization of enzymes usually improves the recyclability and stability and can sometimes also improve the activity compared to enzymes free in solution. Mesoporous silica is a widely studied material as host for immobilized enzymes because of its large internal surface area and tunable pores. It has previously been shown that the pore size is critical both for the loading capacity and for the enzymatic activity; however, less focus has been given to the influence of the particle size. In this work the effect of particle size and particle morphology on the immobilization of lipase from Mucor miehei and Rhizopus oryzae have been investigated. Three kinds of mesoporous silica, all with 9 nm pores but with varying particle size (1000 nm, 300 nm and 40 nm) have been synthesized and were used as host for the lipases. The two lipases, which have the same molecular size but widely different isoelectric points, were immobilized into the silica particles at varied pH values within the interval 5-8. The 300 nm particles were proven to be the most suitable carrier with respect to specific activity for both enzymes. The lipase from M. miehei was more than four times as active when immobilized at pH 8 compared to free in solution whereas the difference was less pronounced for the R. oryzae lipase. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据