4.7 Article

Stress response of fibroblasts adherent to the surface of plasma-treated poly(lactic-co-glycolic acid) nanofiber matrices

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 77, 期 1, 页码 90-95

出版社

ELSEVIER
DOI: 10.1016/j.colsurfb.2010.01.011

关键词

Stress gene; Nanofiber; Plasma treatment; Tissue engineering

资金

  1. Hanyang University [HY-2007-1]

向作者/读者索取更多资源

Recent studies have shown that polymeric scaffolds as a synthetic extracellular matrix (ECM) are essential for regenerating tissues or organs in tissue engineering approaches. Controlling the surface functionality of polymer scaffolds is critical in regulation of cellular responses to the scaffolds during tissue formation. However, the stress response of cells to polymer scaffolds with different surface characteristics is not yet clear. We investigated the expression of heat shock protein (HSP) and Bcl-2 in fibroblasts cultured on electrospun nanofiber matrices with different surface characteristics. The hydrophilicity and chemical composition of electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers was regulated by plasma treatment in the presence of ammonia gas. We found that expression levels of HSP and Bcl-2 in fibroblasts were strongly dependent on the surface hydrophilicity and concentration of nitrogen-containing functional groups on the nanofiber matrices. The controlled hydrophilicity and surface chemical composition of nanofiber matrices enhanced adhesion and spreading of cells on the matrices, resulting in reduction of cellular stress. This approach to controlling the surface properties and regulating expression of a stress gene could be useful in the design of synthetic ECMs for many tissue engineering applications. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据