4.7 Article

Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface

期刊

COLLOIDS AND SURFACES B-BIOINTERFACES
卷 62, 期 1, 页码 36-41

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2007.09.023

关键词

bacterial adhesion; contact angle; zeta potential; pseudomonas fluorescens; hydrophobicity

向作者/读者索取更多资源

Microbial adhesion to the oil-water interface is an important parameter in biodegradation of hydrocarbons to enhance uptake and metabolism of compounds with very low aqueous solubility, but the mechanisms of adhesion are not well understood. Our approach was to study a range of compounds and mechanisms to promote the adhesion of a hydrophilic bacterium, Pseudomonas fluorescens strain LP6a, to an oil-water interface. The cationic surfactants cetylpyridinium, chloride (CPC), Poly-L-lysine and chlorhexidine gluconate (CHX) and the long chain alcohols 1-dodecanol and farnesol increased the adhesion of P fluorescens LP6a to n-hexadecane from ca. 30 to 90% of suspended cells adhering. In contrast, adjusting the ionic strength of the suspending medium only increased the adhesion from about 8 to 30%. The alcohols, 1-dodecanol and famesol, also caused a dramatic change in the oil-water contact angle of the cell surface, increasing it from 24 degrees to 104 degrees, whereas the cationic compounds had little effect. In contrast, cationic compounds changed the electrophoretic mobility of the bacteria, reducing the mean zeta potential from -23 to -7 mV in 0.01 M potassium phosphate buffer, but the alcohols, 1-dodecanol and famesol, had no effect on zeta potential. Even though both types of compounds promoted cell adhesion to the n-hexadecane interface, the mechanisms were different. Alcohols acted through altering the cell surface hydrophobicity, whereas cationic surfactants changed the surface charge density. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据