4.6 Article

Deposition of silica nanoparticles onto alumina measured by optical reflectometry and quartz crystal microbalance with dissipation techniques

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2013.11.049

关键词

Optical reflectometry; QCM-D; Nanoparticles; Coatings; Colloidal silica; Sol-gel

资金

  1. Research Council of Norway (NANOMAT) [182033/S10]

向作者/读者索取更多资源

Understanding of the interactions between particles and the substrate is important for successful sol-gel deposition of thin films. We have studied the deposition of silica nanoparticles on alumina coated surfaces in aqueous electrolytes by optical reflectometry (OR) and a quartz crystal microbalance with dissipation (QCM-D). The deposition of negatively charged silica nanoparticles on positively charged alumina was primarily controlled by the electric diffuse double layer interactions between the substrate and the deposited particles, modulated by the counter-ion release. The build-up of a negative charge on the positively charged substrate resulted in a decrease in the deposition rate with increasing surface coverage. Higher surface coverage of silica nanoparticles was obtained at low pH than at high pH conditions, due to reduced electric diffuse double layer repulsion between the silica nanoparticles. The deposition was enhanced at high pH by increasing the concentration of NaCl due to compression of the electric diffuse double layer. In particular, the repulsion between the silica nanoparticles was efficiently screened at a concentration of NaCl higher than 100 mM and thick silica layers could be deposited at pH = 6 and 8. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据