4.6 Article

Suspension viscosities and shape parameter of cellulose nanocrystals (CNC)

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2011.01.003

关键词

Cellulose nanocrystals; Viscosity; Suspensions; Electroviscous; Atomic force microcopy

资金

  1. Alberta Innovates-BioSolutions (Alberta Forestry Research Institute)
  2. NINT
  3. National Research Council of Canada
  4. Natural Science and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

The successful application of nanoscale materials requires an accurate description of the shape and size of the nanomaterial. Cellulose nanocrystals (CNC) are a plant-derived nanomaterial that is currently being investigated for a variety of applications. We have developed here a method to determine the shape parameter (length/diameter) of rod-like CNC particles using bulk viscosity measurements of CNC solutions. The cellulose nanocrystals were prepared by concentrated sulfuric acid hydrolysis of wood pulp. CNC particles in aqueous solutions carry negative electrical charges due to the sulfate surface groups and showed electroviscous effects. The viscosities of cellulose nanocrystals suspensions were measured at various NaCl electrolyte concentrations and intrinsic viscosities were calculated. The extrapolation of intrinsic viscosity to 1 nm Debye length was used to calculate intrinsic viscosity of hard rods without electroviscous effects. The corresponding shape factor calculated from Simha's equation was 41. Atomic force microscopy (AFM) was used to measure the shape parameter of individual CNC particles. Limited number of measurements yielded an average value of 30. Intrinsic viscosity measurements would be a reliable and relatively simple method to calculate the shape factor of rod-shaped cellulose nanocrystals after electroviscous effects are corrected. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据