4.6 Article

Simulation of meniscus stability in superhydrophobic granular surfaces under hydrostatic pressures

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfa.2011.05.055

关键词

Superhydrophobic coating; Granular surface; Critical pressure; 3-D modeling; Capillary pressure

资金

  1. Defense Advanced Research Projects Agency (DARPA) [W91CRB-10-1-0003]
  2. Captain Christopher Warren, USN

向作者/读者索取更多资源

In this work, a series of numerical simulations has been devised to study the performance of granular superhydrophobic surfaces under elevated hydrostatic pressures. Using balance of forces, an analytical expression has also been developed to predict the critical pressure at which a submersed idealized granular superhydrophobic surface comprised of spherical particles, orderly packed next to one another, departs from the Cassie state. Predictions of our analytical expression have been compared with those of a series of 3-D full-morphology numerical simulations, and reasonable agreement has been observed between the two methods. Full-morphology simulations were then used, for the first time, to compute the critical pressure of superhydrophobic surfaces comprised of randomly distributed spherical particles (e.g., superhydrophobic coatings developed by depositing of hydrophobic aerogel particles), where no analytical method is applicable due to the complexity of the coatings' morphology. Results of our numerical simulations indicate that for coatings made up of mono-disperse hydrophobic particles, critical pressure increases with increasing the solid volume fraction. However, increasing particle diameter results in lower critical pressures when the coating's solid volume fraction is held constant. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据