4.4 Article

Growth mechanism of gold nanoparticles decorated on polystyrene spheres via self-regulated reduction

期刊

COLLOID AND POLYMER SCIENCE
卷 288, 期 4, 页码 395-403

出版社

SPRINGER
DOI: 10.1007/s00396-009-2134-9

关键词

Surfactant-free; Polystyrene spheres; Self-regulated reduction; Nanoparticle

向作者/读者索取更多资源

Uniform polystyrene (PS) microspheres prepared for deposition of metallic nanoparticles were synthesized using the surfactant-free emulsion polymerization based on styrene/potassium persulfate/water (St/KPS/H2O) system. Owing to the presence of sulfate groups, the PS microspheres can be utilized to reduce gold nanoparticles without adding extra reducing agent into the mixture. The synthesis and characterization of metal-polystyrene nanocomposites are reported, and a possible reduction mechanism is proposed: by heating the aqueous solution in the presence of metal ions and PS, the sulfate chain end groups of the PS hydrolyzed and transformed to hydroxyl groups firstly. The hydroxyl groups function as a reducing agent, and carboxylic groups provide a site to adsorb the gold nuclei. The Au nanoparticles grow in size with the coalescence and dissolving of nuclei through the Ostwald ripening process. The PS microspheres and Au nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray power diffraction, and thermal gravimetric analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据