4.7 Article

DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations

期刊

COASTAL ENGINEERING
卷 55, 期 3, 页码 197-208

出版社

ELSEVIER
DOI: 10.1016/j.coastaleng.2007.09.005

关键词

discontinuous Galerkin finite element method; Wave-structure interaction; high-order Boussinesq-type equations; nonlinear and dispersive water waves; unstructured and curvilinear grids; Grid adaption

向作者/读者索取更多资源

We present a high-order nodal Discontinuous Galerkin Finite Element Method (DG-FEM) solution based on a set of highly accurate Boussinesq-type equations for solving general water-wave problems in complex geometries. A nodal DG-FEM is used for the spatial discretization to solve the Boussinesq equations in complex and curvilinear geometries which amends the application range of previous numerical models that have been based on structured Cartesian grids. The Boussinesq method provides the basis for the accurate description of fully nonlinear and dispersive water waves in both shallow and deep waters within the breaking limit. To demonstrate the current applicability of the model both linear and mildly nonlinear test cases are considered in two horizontal dimensions where the water waves interact with bottom-mounted fully reflecting structures. It is established that, by simple symmetry considerations combined with a mirror principle, it is possible to impose weak slip boundary conditions for both structured and general curvilinear wall boundaries while maintaining the accuracy of the scheme. As is standard for current high-order Boussinesq-type models, arbitrary waves can be generated and absorbed in the interior of the computational domain using a flexible relaxation technique applied on the free surface variables. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据