4.5 Article

Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds

出版社

SPRINGER
DOI: 10.1007/s10856-015-5566-4

关键词

-

资金

  1. Research Foundation Flanders (FWO, Belgium)
  2. Alexander von Humboldt Foundation

向作者/读者索取更多资源

The present work describes for the first time the production of self-supporting low gelatin density (<10 w/v%) porous scaffolds using methacrylamide-modified gelatin as an extracellular matrix mimicking component. As porous scaffolds starting from low gelatin concentrations cannot be realized with the conventional additive manufacturing techniques in the abscence of additives, we applied an indirect fused deposition modelling approach. To realize this, we have printed a sacrificial polyester scaffold which supported the hydrogel material during UV crosslinking, thereby preventing hydrogel structure collapse. After complete curing, the polyester scaffold was selectively dissolved leaving behind a porous, interconnective low density gelatin scaffold. Scaffold structural analysis indicated the success of the selected indirect additive manufacturing approach. Physico-chemical testing revealed scaffold properties (mechanical, degradation, swelling) to depend on the applied gelatin concentration and methacrylamide content. Preliminary biocompatibility studies revealed the cell-interactive and biocompatible properties of the materials developed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据