4.6 Article

In Vivo CYP3A4 Activity, CYP3A5 Genotype, and Hematocrit Predict Tacrolimus Dose Requirements and Clearance in Renal Transplant Patients

期刊

CLINICAL PHARMACOLOGY & THERAPEUTICS
卷 92, 期 3, 页码 366-375

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/clpt.2012.109

关键词

-

资金

  1. Fund for Scientific Research Flanders (FWO Vlaanderen)

向作者/读者索取更多资源

Tacrolimus is metabolized by CYP3A4 and CYP3A5 and is characterized by a narrow therapeutic index and highly variable pharmacokinetics. This cross-sectional study in 59 renal transplant patients investigated the relationship among in vivo CYP3A4 activity (assessed using midazolam as a drug probe), CYP3A5 genotype on the one hand, and tacrolimus pharmacokinetics on the other hand, taking into account other potential determinants of tacrolimus disposition. In vivo CYP3A4 activity and CYP3A5 genotype explain 56-59% of variability in tacrolimus dose requirements and clearance, contributing similar to 25 and 30%, respectively. Hematocrit explains an additional 4-14%. These data indicate that CYP3A4- and CYP3A5-mediated tacrolimus metabolisms are major determinants of tacrolimus disposition in vivo and explain a substantial part of the clinically observed high interindividual variability in tacrolimus pharmacokinetics. Furthermore, these data provide a potential basis for a comprehensive approach to predicting tacrolimus dose requirement in individual patients and hence provide a strategy to tailor immunosuppressive therapy in transplant recipients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据