4.7 Article

Tuning the Microstructural and Magnetic Properties of ZnO Nanopowders through the Simultaneous Doping of Mn and Ni for Biomedical Applications

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 31, 期 11, 页码 1111-1117

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2015.09.001

关键词

ZnO; Nanopowders; Soft chemical route; Magnetic properties; Antibacterial activity

向作者/读者索取更多资源

Undoped and Mn+Ni doped ZnO nanopowders were synthesized using a simple soft chemical route by varying the Ni doping level (1, 3, 5 and 7 at.%) and keeping the Mn doping level (10 at.%) constant. X-ray diffraction studies reveal that the incorporated Ni2+ ions form a secondary phase of cubic NiO beyond the Ni doping level of 3 at.%, which is also confirmed by Fourier transform infrared spectroscopy. The band gap of the nanopowders increases (from 3.32 to 3.44 eV) up to 3 at.% of Ni doping and decreases with further doping. ZnO: Mn: Ni nanopowders with 3 at.% of Ni concentration exhibit good antibacterial efficiency. The variation in the size of the nanoparticles, as observed from the TEM images and hydroxyl radicals as evidenced from the photoluminescence results, clearly substantiate the discussion on the antibacterial efficiency of the synthesized nanopowders. Magnetic properties of the synthesized nanopowders were studied using a vibrating sample magnetometer, and the results showed that the doping of Mn and Ni largely influences the magnetic properties of ZnO nanopowders. Copyright (C) 2015, The editorial office of Journal of Materials Science & Technology. Published by Elsevier Limited. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据