4.6 Article

Observations of fcc and hcp tantalum

期刊

JOURNAL OF MATERIALS SCIENCE
卷 50, 期 10, 页码 3706-3715

出版社

SPRINGER
DOI: 10.1007/s10853-015-8931-2

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [FWP 12-013170]
  2. US Department of Energy [DEAC04-94AL85000]

向作者/读者索取更多资源

The metal tantalum has many varied uses including in microelectronics (especially in capacitors) as thin films, in medical applications as an implant material or for surgical instruments, in X-ray lithography for masks, and in high-temperature structural applications. Ta is particularly useful because it is relatively ductile, refractory in nature, and does not readily react with corrosive materials. The body-centered cubic (bcc) crystal structure of pure Ta, also known as the alpha-phase, is the most commonly observed, but Ta is also known to exist in two other allotropes, one tetragonal and the other (much less-well-known) face-centered cubic (fcc). The tetragonal form (beta-Ta) has been produced by various deposition techniques and often occurs mixed with the alpha-phase; the fcc phase has only previously been reported in thin films deposited by thermal evaporation. There have been other reports of 'bcc metals' such as V and Fe existing with an fcc crystal structure when the metal is deposited as a thin film. In the present study, fcc Ta with a = 0.43 nm has been observed using transmission electron microscopy in bulk samples of Ta that have been subjected to quasi-static tensile deformation that was so large as to cause fracture of the material. The fcc phase has a relatively small grain size but appears to be stable at room temperature. It is also shown that relatively large grains (10-20 nm in diameter) of Ta can also exist with an hcp structure with a = 0.304 nm and c = 0.494 nm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据