4.6 Article

Electronic structure and optical properties of Bi,N co-doped SnO2

期刊

JOURNAL OF MATERIALS SCIENCE
卷 50, 期 21, 页码 6993-6999

出版社

SPRINGER
DOI: 10.1007/s10853-015-9250-3

关键词

-

资金

  1. National Natural Science Foundation of China [61172028, 11274143, 11304121]
  2. Natural Science Foundation of Shandong Province [ZR2010EL017, ZR2013AL004]
  3. Research Fund for the Doctoral Program of University of Jinan [XBS1433]

向作者/读者索取更多资源

The geometry, electronic structure, and optical properties of Bi and N co-doped SnO2 are investigated by first-principles calculations. The calculated results show that the N and Bi atoms can be introduced to intrinsic SnO2 with reasonable formation energy (8.95-9.61 eV/cell) at different sites. Interestingly, the BiSn15O31N presents the character of indirect gap semiconductor with n-type conductivity. Increasing the doping concentration of N or Bi, BiSn15O32-x N (x) (x = 2,3) behaves like a hole-rich semiconductor, while BiySn16-y O31N (y = 2,3) possesses the characteristic of metal. Moreover, the band gap of doped structures becomes smaller than intrinsic SnO2 due to the emergence of energy bands contributing from doping elements near the Fermi level. The absorption intensity is enhanced in UV region, and the optical absorption edge shows red-shift phenomenon for all the doped systems. Our results on Bi,N co-doped SnO2 display the improved capacity of absorption and broadened absorption region. These findings can be utilized in light sensor and solar cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据