4.6 Article

Safety limits of cathodal transcranial direct current stimulation in rats

期刊

CLINICAL NEUROPHYSIOLOGY
卷 120, 期 6, 页码 1161-1167

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.clinph.2009.01.022

关键词

tDCS; Rat brain; Neuroplasticity; Cortex stimulation; TMS

资金

  1. Deutsche Forschungsgemeinschaft [Li/1016/3-1]

向作者/读者索取更多资源

Objective: The aim of this rat study was to investigate the safety limits of extended transcranial direct current stimulation (tDCS). tDCS may be of therapeutic value in several neuro-psychiatric disorders. For its clinical applicability, however, more stable effects are required, which may be induced by intensified stimulations. Methods: Fifty-eight rats received single cathodal stimulations at 1-1000 mu A for up to 270 min through an epicranial electrode (3.5 mm(2)). Histological evaluation (H&E) was performed 48 h later. A threshold estimate was calculated from volumes of DC-induced lesions. Results: Brain lesions occurred at a current density of 142.9 A/m(2) for durations greater than 10 min. For current densities between 142.9 and 285.7 A/m(2), lesion size increased linearly with charge density; with a calculated zero lesion size intercept of 52400 C/m(2). Brains stimulated below either this Current density or charge density threshold, including stimulations over 5 consecutive days, were morphologically intact. Conclusion: The experimentally determined threshold estimate is two orders of magnitude higher than the charge density currently applied in humans (171-480 C/m(2)). In relation to transcranial DC Stimulation in humans the rat epicranial electrode montage may provide for an additional safety margin. Significance: Although these results cannot be directly transferred to humans, they encourage the development intensified tDCS protocols. Further animal studies are required, before such protocols can be applied in humans. (C) 2009 international Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据