4.7 Article

Levofloxacin Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial Intelligence in the Treatment of Multidrug-resistant Tuberculosis

期刊

CLINICAL INFECTIOUS DISEASES
卷 67, 期 -, 页码 S293-S302

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cid/ciy611

关键词

tuberculous meningitis; hollow fiber system model; artificial intelligence; Monte Carlo experiments; gyrA mutations

资金

  1. Baylor Research Institute
  2. Wellcome Trust, UK
  3. National Institutes of Health
  4. National Institute of Allergy and Infectious Diseases [U01AI119954]
  5. Baylor Research Institute, Dallas, TX

向作者/读者索取更多资源

Background. Levofloxacin is used for the treatment of multidrug-resistant tuberculosis; however the optimal dose is unknown. Methods. We used the hollow fiber system model of tuberculosis (HFS-TB) to identify 0-24 hour area under the concentration- time curve (AUC (0-24)) to minimum inhibitory concentration (MIC) ratios associated with maximal microbial kill and suppression of acquired drug resistance (ADR) of Mycobacterium tuberculosis (Mtb). Levofloxacin-resistant isolates underwent whole-genome sequencing. Ten thousands patient Monte Carlo experiments (MCEs) were used to identify doses best able to achieve the HFS-TB-derived target exposures in cavitary tuberculosis and tuberculous meningitis. Next, we used an ensemble of artificial intelligence (AI) algorithms to identify the most important predictors of sputum conversion, ADR, and death in Tanzanian patients with pulmonary multidrug-resistant tuberculosis treated with a levofloxacin-containing regimen. We also performed probit regression to identify optimal levofloxacin doses in Vietnamese tuberculous meningitis patients. Results. In the HFS-TB, the AUC (0-24) /MIC associated with maximal Mtb kill was 146, while that associated with suppression of resistance was 360. The most common gyrA mutations in resistant Mtb were Asp94Gly, Asp94Asn, and Asp94Tyr. The minimum dose to achieve target exposures in MCEs was 1500 mg/day. AI algorithms identified an AUC (0-24)/MIC of 160 as predictive of micro-biologic cure, followed by levofloxacin 2-hour peak concentration and body weight. Probit regression identified an optimal dose of 25 mg/kg as associated with > 90% favorable response in adults with pulmonary tuberculosis. Conclusions. The levofloxacin dose of 25 mg/kg or 1500 mg/day was adequate for replacement of high-dose moxifloxacin in treatment of multidrug-resistant tuberculosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据