4.8 Article

Theory of Hydrogen Migration in Organic-Inorganic Halide Perovskites

期刊

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
卷 54, 期 42, 页码 12437-12441

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.201502544

关键词

density functional calculations; hybrid perovskites; proton transport; solar cells

资金

  1. Leona M. and Harry B. Helmsley Charitable Trust
  2. Lise Meitner Minerva Center for Computational Chemistry
  3. Austrian Science Fund (FWF) [J3608-N20]
  4. US Office of Naval Research [N00014-14-1-0761]
  5. Weston Visiting Professorship Program
  6. Austrian Science Fund (FWF) [J 3608] Funding Source: researchfish
  7. Austrian Science Fund (FWF) [J3608] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

Solar cells based on organic-inorganic halide perovskites have recently been proven to be remarkably efficient. However, they exhibit hysteresis in their current-voltage curves, and their stability in the presence of water is problematic. Both issues are possibly related to a diffusion of defects in the perovskite material. By using first-principles calculations based on density functional theory, we study the properties of an important defect in hybrid perovskites-interstitial hydrogen. We show that differently charged defects occupy different crystal sites, which may allow for ionization-enhanced defect migration following the Bourgoin-Corbett mechanism. Our analysis highlights the structural flexibility of organic-inorganic perovskites: successive iodide displacements, combined with hydrogen bonding, enable proton diffusion with low migration barriers. These findings indicate that hydrogen defects can be mobile and thus highly relevant for the performance of perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据