4.7 Article

In Vitro Studies of a Novel Antimicrobial Luer-Activated Needleless Connector for Prevention of Catheter-Related Bloodstream Infection

期刊

CLINICAL INFECTIOUS DISEASES
卷 50, 期 12, 页码 1580-1587

出版社

OXFORD UNIV PRESS INC
DOI: 10.1086/652764

关键词

-

资金

  1. Baxter Healthcare

向作者/读者索取更多资源

Background. We report in vitro studies of a commercially available novel antimicrobial Luer-activated connector with the inner surface coated with nanoparticle-silver to prevent contaminants from forming biofilm and causing catheter-related bloodstream infection. Methods. Sterile control nonmedicated connectors and antimicrobial connectors were filled with similar to 1 x 10(5) cfu/mL of Staphylococcus epidermidis, methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, Enterobacter cloacae, Pseudomonas aeruginosa, or Candida albicans; after 24 h of incubation, the numbers of remaining viable microorganisms were quantified and compared with the concentration in control connectors (similar to 1 x 10(7) cfu/mL). In trials simulating clinical use, septal membranes of connectors were inoculated with E. cloacae, were allowed to dry, and were then actuated and infused with lactated ringer's solution for 72 h, with sampling for microorganisms in downstream efferent fluid and for biofilm in the connector. Results. Microorganisms suspended in the intraluminal fluid path of antimicrobial connectors were rapidly killed. For 5 species, there was a 5.23-6.80 mean log 10 reduction (>99.999%), and with C. albicans, there was a 99.9% reduction. In clinical simulation trials, heavy contamination of downstream fluid was detected at all time points with control connectors, reaching similar to 1 x 10(5) cfu/mL at 72 h, and heavy biofilm was uniformly present; with the antimicrobial connectors, there was complete prevention of downstream fluid contamination and total absence of biofilm formation. Conclusions. These simulation experiments show that needleless connectors readily acquire an internal biofilm when microorganisms gain access to the internal fluid path and that biofilm formation allows an exponential buildup of internal contamination, with shedding back into the fluid path and downstream sufficient to cause bacteremia. Incorporation of nanoparticle silver into the lining surfaces of the novel connector kills microorganisms in the fluid pathway and prevents internal biofilm formation, even with high levels of introduced contamination and continuous fluid flow. This technology deserves to be evaluated in a prospective, randomized clinical trial to determine its capacity to prevent catheter-associated bloodstream infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据